Carrot: An Open Protocol for Naming Bitcoin Addresses
Gregg Zigler, Rick Seeger

Abstract. Person-to-person bitcoin payments currently require either in-person
scanning of QR codes or out-of-band communication of 34-character bitcoin
addresses. Previous attempts at improving that user experience involve trusted
third parties who have custody of private keys, or who require new identifiers for
users, or both. We propose a solution that minimizes trust in third parties and that
maximizes use of existing identifiers such as email addresses, phone numbers,
and social network names. The proposal rests on the hypothesis that many
people will exchange some privacy for significant improvements in ease of use.
The proposed protocol distributes bitcoin address naming across multiple
participants to encourage decentralization.

1. Introduction

Outside of the bitcoin ecosystem, person-to-person (P2P) payment systems commonly use
pre-existing, externally-issued identifiers such as email addresses to identify recipients of
payments. Software developers have access to countless libraries that incorporate
externally-issued identifiers into their applications.

Unlike email addresses and phone numbers, bitcoin addresses represented as 34-character,
base58-encoded strings offer humans little hope for memorization. They lack embedded natural
language words that are common in email addresses and social network names, and they lack
meaningful groupings of digits found in national telephone numbering systems. What is needed
is the ability to make a bitcoin P2P payment by addressing the payment to the recipient’s email
address or phone number.

In this paper, we propose an open protocol with three classes of participants, a query protocol
with incentives for all three classes, and an extensible message format. We follow the protocol
description with the incentive, privacy, and security models that underly the protocol.

2. Participants
The Carrot protocol connects users (payers and payees) with three classes of protocol
participants. Classes are ordered by amount of trust required by the payer.

Class 1: Bitcoin wallets

Wallets use local storage to read and write confirmed mappings between email addresses and
bitcoin addresses. Mobile wallet applications can also access contact lists with phone numbers
and email addresses of potential payment recipients.

Class 2: Identity providers



Email service providers, mobile carriers, and social networks issue and maintain a unique
identifier for each of their customers. Identity providers also provide native channels of
communication with their customers. For example, mobile carriers natively communicate with
their customers via SMS.

Class 3: Name registries

A name registry is any service that provides create, read, update, and delete (CRUD)
functionality for mappings between externally-issued identifiers and bitcoin addresses. The
protocol for these CRUD operations is specified below.

Wallet
Software
Local Identity Name
Storage Provider Registry

3. Registry Protocol

Users (payees) who wish to receive payments first generate a bitcoin address which they will
associated with their email address with class-2 and class-3 participants. The user then
registers that bitcoin address with the class-2 participant who issues the identifier of the user.
For example, the email address rick@gmail.com would be registered with Google with the
following percent-encoded API call:

POST https://carrot.gmail.com/rick%40gmail.com?address=1MsJbRTynVS..

Participants may provide additional channels for registering a bitcoin address, such as websites.
Participants must confirm that the user controls the identifier using the native communication
channel of that identifier. For example, to confirm ownership of an email address, the participant
must send the user a confirmation email requiring the user to select a link in the email body. At
any time, a user may PUT a different bitcoin address or DELETE the association.

If the class-2 issuing provider does not support the Carrot protocol, the user may register with
any class-3 participant.

4. Query Protocol

Users (payers) who wish to send payments open their bitcoin wallet application, go to the send
payment form, and enter the email address of the recipient. The wallet software executes the
following operations.



Step 1: Query local storage

The wallet software looks in local storage for a mapping between from the email address to a
bitcoin address. Previous executions of this query protocol will have populated local storage with
confirmed mappings between email addresses and bitcoin addresses in step 4.

Step 2: Query the class-2 participant

If step 1 fails to find a match, the wallet software continues to step 2. There should be exactly
one class-2 participant that maintains the identifier entered by the user. To find the bitcoin
address of rick@gmail . com, the wallet software would make the following API call:

GET https://carrot.gmail.com/rick%40gmail.com

If Google finds a record for Rick’s email address, Google would respond with the associated
bitcoin address.

Step 3: Query class-3 participants
If step 2 fails to find a match, the wallet software continues to step 3. For example, to find Rick’s
email address at the kar.yt name registry, the wallet sofware would make the following API call:

GET https://kar.yt/rick%40gmail.com

The wallet software should allow the user to configure one or more class-3 participants.
Precedence of multiple class-3 participants is not defined by this protocol.

Step 4: Update local storage

If the wallet software finds a match at either a class-2 or class-3 participant, the wallet software
should prompt the user to confirm the bitcoin address with the recipient (payee) using an
out-of-band channel, such a verbal confirmation, and then persist the address in local storage.

5. Message Format

Schema

For a given external identifier plus currency code plus network, there should be at most one
address returned by the service using the following Address schema:

wallet name: string, external identifier e.g. email address
currency: string, ISO 4217, POST/PUT default is 'XBT',

network: string, 'btc livenet' (POST default) or 'btc testnet',
wallet address: string, address on network, no default



Example:
{
wallet name: 'rick@gmail.com',
currency: 'XBT',
network: 'btc livenet',
wallet address: '1MsJbRTynV840eEns3V/A3RUrTs2xcJ5Uxa’

This Address schema extends the Netki address format [3] in two ways. First, it adds a
network property to support livenet and testnet addresses for a single email address. Second,
it specifies ISO 4217 currency codes for the currency property; for compatibility, this protocol
treats the Netki currency code 'btc' as an alias for 'XBT'.

Request

Following the BIP14 specification [1], wallet software should send software name and version,
separated by a colon and enclosed in forward slashes, in the user-agent header. For example,
the Satoshi client might send the following header:

user-agent: /Satoshi:0.9.1/

The entire URI, including any @-sign in the query parameters, must be percent-encoded. The
the currency and network properties may be uppercase, lowercase, or mixed case.

Callers of the GET and DELETE operations must specify exactly one wallet name query
parameter per call, and may include currency and network parameters. Callers of the POST
and PUT operations must specify exactly one Address per call.

Response

The response to a successful GET request contains an array of Address objects. Successful
POST or PUT requests return a single Address object in the message body. Successful DELETE
requests have no response message body. A POST request for an existing address behaves
exactly like a PUT request.

The response header includes cache-control: no cache, because the user may change
the bitcoin address at any time.

6. Incentives
We hope to attract a large number of participants to support the Carrot protocol. To that end,

Carrot provides incentives to each type of participant.

Ease of use



Developers of class-1 wallet software can use existing contact libraries to offer familiar patterns
of interaction, such as look-ahead address completion, invitation of friends, and synchronization
with registries.

Financial data
Existing class-2 issuers of identifiers can gain access to financial data of their customers.

Value-added services
New class-3 businesses can attract customers by offering services such as notification of
payments by email and SMS.

7. Privacy

The Carrot protocol reflects our hypothesis that many people will exchange privacy (in the form
of bitcoin addresses) for ease of use. This hypothesis extrapolates decades of experience with
user tolerance for web browser cookies into the world of bitcoin wallets.

Payees using the Carrot protocol must be willing to make one bitcoin address publicly visible
and publicly associated with their email address, so that their friends can more easily discover
their bitcoin address and send them money. Just as some users surf the web using browser
privacy-mode, some payees will want separate non-public wallets for private shopping to avoid
merges [2].

Meiklejohn and others [4] found that bitcoin addresses already have limited privacy due to
idioms of combining change addresses, and due to clustered usage of gaming-related
addresses. We therefore believe that Carrot does not represent a significant loss of privacy
relative to current usage.

Some have proposed sharing extended public keys with a class-2 and class-3 participant, who
would generate a new bitcoin address for each GET query. One problem with that proposal is
that a DDOS attack might generate thousands of addresses for a single email address, which
would be impossible for a mobile wallet to monitor. Another problem is that services like Gmail
and Lavabit wouldn’t be able to keep the extended public key both secret and on-line, due to
hacking or coercion; at best, that proposal would buy temporary privacy at the cost of much
greater complexity.

8. Security
To reduce the amount of trust in third parties required of payers, wallet software must do the
following:

a. inform the user which participant provided the address data
b. inform the user when an address has changed
c. post new receiving addresses to a class-2 or class-3 participant



d. support a user-configurable blacklist of class-2 and class-3 participants that are known to
be untrustworthy

To ensure that payees who attempt to register a bitcoin address actually control the externally
issued identifier associated with it, class-2 and class-3 participants must require confirmation via
the native channel of that identifier. For example, to update a bitcoin address associated with a
social network handle, that social network provider must require the user to login and confirm
the change. Until the user confirms the change, the participant responds to GET requests using
data from the previous state.

9. Conclusion

We have proposed a system for payers to discover bitcoin addresses of payees via publicly
qgueryable mappings to payee email addresses or other familiar, externally issued identifiers.
The query protocol gives precedence to sources requiring the lowest level of trust by the payer,
starting with addresses from local storage that were previously verified by the payer.
Participants ensure the validity of the mapping by requiring users to confirm control of identifiers
via familiar, native channel confirmation workflows. Users share bitcoin address from wallets
whose transactions are publicly associated with their email addresses; users keep separate
wallets for transactions requiring more privacy. Wallet software developers provide a familiar
user experience that integrate existing contact list address books into P2P bitcoin payments.

References

[1] A. Taaki, P. Strateman, "BIP Protocol Version and User Agent",
https://en.bitcoin.it/wiki/BIP_0014, 2010

[2] M. Hearn, "Merge Avoidance",
https://medium.com/@octskyward/merge-avoidance-7f95a386692f, 2013

[3] Netki Wallet Name Service source code, https://github.com/netkicorp/wns-api-server

[4] S. Meiklejohn, et al. "A Fistful of Bitcoins: Characterizing Payments Among Men with No
Names," https://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf, 2013

Last update: Sunday, July 12, 2015 7:00 PM



